Development of a Novel Gas Pressurized Stripping (GPS)-Based Technology for CO₂ Capture from Post-Combustion Flue Gases DE-FE0007567

> Carbon Capture Scientific, LLC. CONSOL Energy Inc. Nexant Inc. Western Kentucky University

Presented by Shiaoguo (Scott) Chen

DOE Carbon Capture Technology Meeting, July 10, 2012, Pittsburgh, PA

About Carbon Capture Scientific, LLC

- Early stage company located in Pittsburgh, PA
- **Two patent pending CO₂ capture technologies**
- Bench-scale development funded by the Department of Energy / National Energy Technology Laboratory
- Chemical Engineers/Scientists with strong expertise in process design, simulation and optimization
- Technology development based on transition from thermodynamic analysis, to process simulation, to bench scale prototyping

Project Budget

	Budget, \$
DOE	2,999,756
CCS	751,178*
Total	3,750,934

*including cost share from CONSOL Energy and Western Kentucky University

DOE funding and cost share on a yearly basis

3

Project Team and Focus

DOE/NETL

Timothy Fout, NETL project manager

Carbon Capture Scientific, LLC

- Computer simulation to optimize GPS based process for existing power plants
- Bench-scale experiments to obtain process design data for GPS based process

CONSOL Energy Inc.

Work with CCS to acquire phase equilibrium and related process design data

Nexant Inc.

Conduct techno-economic analyses for the GPS based technology

Western Kentucky University (WKU)

Consult on thermal and oxidative properties; Corrosion effects and physical property measurements

Project Objectives

- Conduct computer simulations to maximize the benefit of the GPS technology for existing power plants
- Perform bench-scale tests of individual process units to obtain necessary process design data for the pilot scale
- Carry out experimental investigation of selected solvents to minimize the economic risk of the GPS technology
- Conduct techno-economic analyses for GPS based process to identify improvement potentials

An Integrated Process for CO₂ Capture and Compression

Ignore all the driving force for heat and mass transfer

van't Hoff Equation:

$$\frac{dlnK}{dT} \approx \frac{-dlnP_{CO2}}{dT} = \frac{-\Delta H}{RT^2}$$

Thermodynamics of the Integrated CO₂ Capture Process

Issues with Conventional Strippers

- Water vapor is used as stripping gas, thus operating pressure is limited by the vapor pressure of the lean solution at the reboiler temperature
- Water vapor is also used as a heat carrier which leads to a temperature gradient along the column
- □ *Low operating pressure* results in a high ratio of P_{H2O} / P_{CO2} at the top of the stripper

Consequences:

–Low thermal efficiency–High compression work

8

The Novel Gas Pressurized Stripping (GPS) Column

Adding a high pressure stripping gas stream into the column

- Eliminating water as stripping gas
- Enables high operating pressure

Adding side heaters to provide heat

- Eliminates the necessity of using water vapor as heat carrier
- Reduces temperature gradient in the stripper

Product gas is a mixture of stripping gas and CO₂ along with water vapor

- ✓ Increased CO₂ partial pressure
- Requires a separation unit

GPS Column Based Process---One Solvent GPS Process

Advantages of the GPS Based Processes

Uses commercial off-the-shelf technology

- All major equipment are common with conventional absorption/stripping processes
- suitable for large scale applications such as power plants
- High operating pressure
 - Low stripping heat
- □ Minimal or no need for mechanical CO₂ compression
 - Uses thermal compression
 - High thermal efficiency (low exergy loss)
- Flexible
 - > Many common units with the conventional absorption/stripping processes
 - Can be repeatedly used depending on the needs

Project Schedule: Oct.1, 2011 – Sept.30, 2014

		Task Duration											Performer			
Tasks		1-1 BP	12 1			13- Bl	-24 P2			24 Bl	-36 P3	Task Focus	CCS	CONSOL	Nexant	wкu
Task 1. Project planning & management												N/A	Х			
Task 2. GPS column study and its optimization				A								Process	Х			
Task 3. Optimization of GPS process for existing plant								С				Process	Х			
Task 4. Optimization of flashers												Process	Х			
Task 5. Phase equilibrium data measurement												Solvent	Х	X		
Task 6. First absorption column testing												Process	Х	X		
Task 7. GPS column design/ fabrication and testing								D				Process	Х	x		
Task 8. Second absorption column testing											E	Process	Х	X		
Task 9. Stability of solvent at highloading and high T				B								Solvent	Х			X
Task 10. Corrosion test at highloading and high T												Solvent	Х			X
Task 11. Physical properties measurement												Solvent	Х	X		X
Task 12. Survey of EH&S of GPS process												Solvent	Х			
Task 13. Preliminary techno- economic analysis												Economics			Х	
Task 14. Revision of techno- economic analysis												Economics			Х	
Task 15. Updated techno- economic analysis											F	Economics			Х	

Project Milestones and Success Criteria

Milestones

Success Criteria

	GPS column study and optimization	Category	Risk	Target	
A	or greater		High	$\int \cos \alpha f < 2 kg$	
В	Solvent loss due to degradation of solvent is less than 3 kg/ ton CO_2	Solvent Loss	leads to solvent loss	ton CO ₂	
с	Overall energy performance column and solvent less than or equal to 0.22 kwh/kg CO ₂	Equipment	High operating P and T result in	Increase of < 20% relative t	
D	GPS column efficiency experimental measured at 50% or greater	Capital Cost	large increase in capital cost	conventiona	
E	Overall energy performance of system less than or equal to 0.20 kwh/kgCO ₂	Enerav	Still require significant amount of	Consumption	
F	Increase in capital equipment costs of less than or equal to 20% over existing process	Consumption	mechanical compression of CO ₂	of < 0.22 kWh/kgCO ₂	

Tasks for BP 1: Simulation & Experiments

Task #	Description	Simulation / Experiment	Comments
2	GPS column study and its optimization	Simulation	In process / on schedule/ meet milestone
5	Phase equilibrium data measurement	Experiment	In process / on schedule
6	First absorption column testing	Experiment	In process / on schedule
9	Stability of solvent at high loading and high T	Experiment	In process / on schedule / meet milestone
13	Preliminary techno- economic analysis	Simulation	In process / on schedule / design document generated

Task 2. GPS Column Study and Optimization

A report entitled:

"Preliminary Simulation of GPS Based Process: Used as Input for Preliminary Techno-economic Analysis"

Has been submitted to Nexant

Items	Conventional MEA	GPS Process
Reaction Heat KJ/kgCO ₂	1870	1472
Stripping Heat KJ/kgCO ₂	690	156
Stripping Column Total Heat KJ/kgCO ₂	2560	1628
Minimum Heat Required KJ/kgCO ₂	989	1277
Stripping Column Efficiency (%)	39	78**

****** Milestone is 60% efficiency for GPS column

Task 5: Phase equilibrium data measurement

Task 6: First Absorption Column Testing

CAPTURE SCIENTIFIC, LLC.

17

Task 9: Stability of solvent at high loading and high T

Task 13. Preliminary techno-economic analysis

- "Gas Pressurized Stripping for CO₂ Capture from Post-Combustion Flue Gas – Preliminary Technology Feasibility Study Basis" has been finalized
- □ Techno-economic analyses are in progress

- Company infrastructure in place, personnel hired and performing tasks
- All experimental testing for BP1 underway and proceeding as planned
- Two milestones for Budget Period 1 have been achieved
 - GPS column Efficiency of 60%: actual 85%
 - Solvent loss 3kg/tonCO₂: actual <1kg/tonCO₂
- **Given Series are all within budget**

Future Work

Perform Tasks in BP2

Task	Description	Simulation / Experiment
3	Optimization of GPS process for existing plant	Simulation
7	GPS column design/ fabrication and testing	Experiment
10	Corrosion test at high loading and high T	Experiment
14	Revision of techno-economic analysis	Simulation

Prepare for Pilot Scale Tests

Process design data for GPS based technology

Looking for EOR Opportunities

GPS technology uses off-the-shelf equipment

Interested in partnering opportunities

Acknowledgements

Funded by U.S. Department of Energy/ National Energy Technology Laboratory under Agreement No. DE-FE0007657

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

